

BOA documentation

BOA (Buffer Overflow Annihilator) is a vulnerability analyzer of general purpose.
It is written in Python, and the main principle which it has coded has been to
give the maximum flexibility to the user, and for that reason, modularity is a
BOA’s priority. Through dynamic module loading, it is possible to use the language
parser which the user wants and use it to focus their own security needs.

[image: BOA Architecture]

BOA Architecture

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

BOA main flow

BOA main file.

This file handles the higher level interaction with BOA.

Main tasks:

	It handles args.

	It handles runners modules.

	It handles code modules (BOA’s goal).

	It handles the general flow.

	
boa.main()

	It handles the main BOA’s flow at a high level.

	Returns

	status code

	Return type

	int

	
boa.manage_args()

	It handles BOA’s general args through ArgsManager class.

	Returns

	status code

	Return type

	int

BOA internals

BOA arguments handler

BOA arguments manager.

This file handles the arguments which are provided to BOA.

Concretely, the ArgsManager class loads, parses and checks
the arguments. The arguments are defined in this file

	
class args_manager.ArgsManager

	ArgsManager class.

It handles the arguments provided to BOA CLI.

	
__init__()

	It creates the ArgParse parser object.

	
__weakref__

	list of weak references to the object (if defined)

	
check()

	It checks if the arguments are the expected type.

Concretely, in this method it is checked if the arguments are
an instance of argparse.Namespace.

	Returns

	status code

	Return type

	int

	
load_args()

	It creates the list of arguments.

	
parse()

	It parses the arguments.

	Returns

	status code

	Return type

	int

Constants

File with constant values.

This file contains constant information about BOA.

It contains multiple classes:

	Meta class: it contains information about BOA.

	Error class: it contains status code with a descriptive name.

	Regex class: it contains regex strings.

	Other class: it contains all the constants whose goal does not
match with the other classes.

	
class constants.Error

	Error class.

It contains information about the different error status code
we can find through BOA’s code. The information that it is in
this class are just numeric status error with a descriptive
name to know exactly the cause of the error.

When BOA finishes the execution, it displays the status code.
If the status code displayed matches with Meta.ok_code,
it means that everything went fine. Otherwise, check the
status code within this class.

	
class constants.Meta

	Meta class.

It contains information about BOA like the version, the description, …

	
class constants.Other

	Other class.

This class contains all the other information that
does not match with the goal of the other classes.
Or does not have a concrete goal.

	
class constants.Regex

	Regex class.

This class contains the regex which are used by
other BOA modules.

Rules Manager

Rules Manager file.

This file contains the necessary methods in the
RulesManager class to load, check and process the
rules file.

The file rules should contain all the necessary
information to execute a concrete analysis.
However, multiple and independent analysis
might be executed.

Each rules file should contain a complete analysis
technique defined. If multiple modules are being used,
this should be to reach the goal of execute a complex
but concrete analysis.

	
class rules_manager.RulesManager(rules_file)

	RulesManager class.

This class defines the necessary methods to load,
check and process the rules from a file.

	
__init__(rules_file)

	It initializes the necessary variables.

	Parameters

	rules_file (str) – path to the rules file.

	
__weakref__

	list of weak references to the object (if defined)

	
check_rules(save_args)

	It checks if the rules file contains the mandatory
rules. The checking is performed by name and elements
quantity, so it has to match in both properties.

If self.rules is None, the checking fails.

	Parameters

	save_args (bool) – it indicates that the arguments
have to be saved while they are being checked.

	Returns

	true if the rules are valid; false otherwise

	Return type

	bool

	
check_rules_arg(arg, father, grandpa, save_args, args_reference, sort_args)

	It checks if the <args> elements are correct recursevely.

This method works recursively making the following calls:

	check_rules_arg -> check_rules_arg_recursive

	check_rules_arg_recursive -> check_rules_arg

What this method makes is checking if the <args> elements
which are inside are correct and, optionally, save them to
being used by the target module which is specified in the
rules file.

If the arguments want to be saved, the order may not be the
expected. If the <args> elements are mixed, the predefined
order will be:

	Dictionaries

	Lists

	Elements

If you want to have the elements in the correct order
which you wrote, you can avoid mixing the elements
or use the sort_args argument to have a partial sorting
(this partial sorting makes worse the performance while
checking). We say “partial” because the result will be
that if you are mixing elements, all them will be grouped
and will appear in the order which the first type of
element appeared.

	Parameters

	
	arg – current arg which is being checked (processed recursively).

	father (str) – arg’s father.

	grandpa (str) – arg’s grandpa; father’s father.

	save_args (bool) – it indicates if you want to save the args
while they are being checked.

	args_reference – if save_args is True, this is the concrete
arg reference which it changes while recursion is being
processed. It changes the reference from call to call to
save the concrete args here.

	sort_args (bool) – it indicates if you want a partial sorting
when you mix different type of elements.

Example

<args>

<dict>

<list name=”l1”></list>

<dict name=”d”></dict>

<element name=”e” value=”v” />

<list name=”l2”></list>

</dict>

</args>

Unsorted result: {“d”: {}, “l1”: [], “l2”: [], “e”: “v”}

Partial sorted result: {“l1”: [], “l2”: [], “d”: {}, “e”: “v”}

	Returns

	true if the arguments are valid; false otherwise

	Return type

	bool

	
check_rules_arg_high_level(dict_tag, parent_tag_name, tag_prefix, save_args)

	This is the method that should be invoked when
you want to check, and optionally parse, the arguments
from the rules file.

	Raises

	
	BOARulesIncomplete – when the number of expected
 mandatory rules does not match with the actual
 number of rules or when a concrete rule is not
 found.

	BOARulesUnexpectedFormat – when the format of a rule
 is not the expected.

	BOARulesError – when an non-specific error happens.

	
check_rules_arg_recursive(arg, element, father, arg_reference, args_reference, save_args, sort_args)

	This method is used by check_rules_arg method.

This method wraps the common behaviour for saving the arguments
references and makes the necessary recursive calls for each
element. Moreover, it checks that the arguments, depending on
the concrete element, contains the expected attributes (e.g.
a dictionary’s element contains a name attribute).

For details, check check_rules_arg documentation.

	Parameters

	
	arg – current arg which is being checked (processed recursively).

	element (str) – the concrete type of element which is being given.
It may be “dict”, “list” or None. If None, it indicates
that the element is a “element”.

	father (str) – arg’s father.

	arg_reference – the new reference which will be appended to
args_reference.

	args_reference – if save_args is True, this is the concrete
arg reference which it changes while recursion is being
processed. It changes the reference from call to call to
save the concrete args here.

	save_args (bool) – it indicates if you want to save the args
while they are being checked.

	sort_args (bool) – it indicates if you want a partial sorting
when you mix different type of elements.

	Returns

	true if the arguments are valid; false otherwise

	Return type

	bool

	
check_rules_dynamic_analysis_runner(save_args, runner_module)

	It makes the checks relative to the runner modules which
are used in the dynamic analysis.

	Parameters

	
	save_args (bool) – it indicates that the arguments
have to be saved while they are being checked.

	runner_module (str) – runner which is going to be processed
in order to check the rules.

	Raises

	
	BOARulesIncomplete – when the number of expected
 mandatory rules does not match with the actual
 number of rules or when a concrete rule is not
 found.

	BOARulesError – when a semantic rule is broken.
 You have to follow the rules documentation to
 avoid this exception.

	KeyError – if runner_module is not an expected runner.

	
check_rules_init()

	It makes the initial checks.

	Raises

	BOARulesIncomplete – when the number of expected
 mandatory rules does not match with the actual
 number of rules or when a concrete rule is not
 found.

	
check_rules_modules(save_args)

	It makes the checks relative to the modules.

	Parameters

	save_args (bool) – it indicates that the arguments
have to be saved while they are being checked.

	Raises

	
	BOARulesIncomplete – when the number of expected
 mandatory rules does not match with the actual
 number of rules or when a concrete rule is not
 found.

	BOARulesUnexpectedFormat – when the format of a rule
 is not the expected.

	BOARulesError – when an non-specific error happens.

	
check_rules_parser()

	It makes the checks relative to the parser.

	Raises

	BOARulesIncomplete – when the number of expected
 mandatory rules does not match with the actual
 number of rules or when a concrete rule is not
 found.

	
check_rules_report(save_args)

	It makes the checks relative to the report.

	Parameters

	save_args (bool) – it indicates that the arguments
have to be saved while they are being checked.

	Raises

	
	BOARulesIncomplete – when the number of expected
 mandatory rules does not match with the actual
 number of rules or when a concrete rule is not
 found.

	BOARulesError – when a semantic rule is broken.
 You have to follow the rules documentation to
 avoid this exception.

	
close()

	It closes the rules file to release the resource.

	Returns

	status code

	Return type

	int

	
get_args(module=None)

	It returns the args for a concrete module.

	Parameters

	module (str) – module from which args are going
to be returned. The expected format is
(without quotes): “module_name.class_name”.
Check utils.get_name_from_class_instance.
The default value is None.

	Returns

	module args or all the modules args;
None if a module were specified and could
not find it

	Return type

	dict

	
get_dependencies(module=None)

	It returns the dependencies for a concrete module.

	Parameters

	module (str) – module from which args are going
to be returned. The expected format is
(without quotes): “module_name.class_name”.
Check utils.get_name_from_class_instance.
The default value is None.

	Returns

	module dependencies or all the modules dependencies;
None if a module were specified and could not find it,
what means that the module does not have dependencies

	Return type

	dict

	
get_report_args()

	It returns the args for the Report instance.

	Returns

	report args

	Return type

	dict

	
get_rules(path=None, list_type=False)

	It returns the rules.

The rules can be obtained with a concrete path, which
means that you can obtain the rules you want directly,
without go through them. The path is a string which
will be splited with ‘.’.

	Parameters

	
	path (str) – the returned rules will be from a starting
point. If you to get all the modules rules, the path
has to have the value “boa_rules.modules.module”.
The default value is None.

	list_type (bool) – the returned rules will be wrapped
in a list. The default value is False.

	Returns

	rules from the rules file. If list_type is True,
the returning type will not be dict but list.

	Return type

	dict

	
get_runner_args(runner_module)

	It returns the args of a runner module.

	Parameters

	runner_module (str) – key of self.runner_args which is where
the parameters are stored.

	Returns

	args if they exist, but empty dict and logging warning
if does not

	Return type

	dict

	
open()

	It opens the rules file, checking if exists first.

	Returns

	status code

	Return type

	int

	
read()

	It reads the rules file and saves the necessary information.

	Returns

	status code

	Return type

	int

	
set_args(module, arg)

	It sets the arguments for a concrete module.
This method should only be used for internal management.

	Parameters

	
	module (str) – instance identification as string. The
expected format is (without quotes): “module_name
.class_name”. Check utils.get_name_from_class_instance.

	arg (dict) – the new args for the module.

	Returns

	True if the args could be set; False otherwise

	Return type

	bool

	
set_dependencies(module, dependencies)

	It adds dependencies for a concrete module.
This method should only be used for internal management.

	Parameters

	
	module (str) – instance identification as string. The
expected format is (without quotes): “module_name
.class_name”. Check utils.get_name_from_class_instance.

	dependencies (dict) – the new dependencies for the module.

	Returns

	True if the dependencies could be apppended; False otherwise

	Return type

	bool

Modules Importer

Module Imports.

This file contains the ModulesImporter class.

	
class modules_importer.ModulesImporter(modules, filenames=None)

	ModulesImporter class.

This class has the goal of loading the modules which
are specified in the given rules.

	
__init__(modules, filenames=None)

	It initializes the class.

	Parameters

	
	modules (list) – modules (str) which should be loaded after.

	filenames (list) – modules filenames (str). The default
value is None, and if this value remains, modules
will be used as filename.

	
__weakref__

	list of weak references to the object (if defined)

	
get_instance(module_name, class_name)

	It returns an instance of the class of a module.

	Parameters

	
	module_name (str) – module name which should contains class_name.

	class_name (str) – class name which is attempted to return.

	Returns

	Module instance if module is loaded; None otherwise

	
get_module(module_name)

	It returns an already loaded module.

	Parameters

	module_name (str) – module name which is attempted to return.

	Raises

	
	BOAModuleNotLoaded – when it is attempted to get a module
 which is not loaded.

	Exception – when a module is detected as loaded but it is
 not loaded in sys.modules. It should not happen.

	Returns

	Module if loaded; None otherwise

	
get_nloaded()

	It returns the number of loaded modules at the moment of the calling.

	Returns

	loaded modules

	Return type

	int

	
get_nmodules()

	It returns the number of modules which were suplied to the class
to be loaded.

A different variable is being used instead of len() method because
the variable which contains the methods to be loaded mutates
through the execution of the class methods.

	Returns

	initial modules to be loaded

	Return type

	int

	
get_not_loaded_modules()

	It returns the modules which have not been loaded.

	Returns

	not loaded modules

	Return type

	list

	
is_module_loaded(module_name)

	It checks if a concrete module is already loaded.

	Parameters

	module_name (str) – module to check if it is loaded.

	Returns

	module_name is loaded

	Return type

	bool

	
load(module_subdir=None)

	It attempts to load all the modules which were specified.

This method iterates through self.modules to attempt to loading
the modules. First, it checks if the module is already loaded.
Then, it attempts to load the module and if it is not able to,
it skips the current module to next.

The modules must be in Other.modules_directory directory.

	Parameters

	module_subdir (str) – subdir of Other.modules_directory where
the module will be looked for instead of directly look for
in Other.modules_directory

	
classmethod load_and_get_instance(module, absolute_file_path, class_name, verbose=True)

	Class method which attempts to load a module and return an
instance of it.

If the module is already loaded, it will skip the loading part
and it will continue to next phase: get the instance.

	Parameters

	
	module (str) – module name to be loaded.

	absolute_file_path (str) – full path to the file which contains
the module to be loaded.

	class_name (str) – class name inside the module which is going
to be instantiated.

	verbose (bool) – if True, a message will be displayed if the
loading success.

	Returns

	an instance of “module.class” which has been specified
or None if could not.

	Return type

	instance

Exceptions

Utilities

Severity Base (Interface)

Severity levels.

In this file is defined the base enum for defining
severity levels, whose can be overridden and new ones
can be defined.

	
class enumerations.severity.severity_base.SeverityBase(value)

	SeverityBase class (enum).

You can inherit from this class and implement your own
severity levels. An approach could be to use the standard
risk model (risk = likelyhood [0-N] * impact [0-N]). To
allow the inheritance we have to let this enum empty.

The enum values mean the priority (higher means more
critical). This values will be used for sorting the
records.

Severity Syslog

Severity level based on syslog (RFC 5424).

This severity level defines 8 levels of severity.

	
class enumerations.severity.severity_syslog.SeveritySyslog(value)

	SeveritySyslog class (enum).

There are multiple ways of defining severity levels.
For the severity base we are using an approach based
on Syslog Message Severities (RFC 5424).

Severity for Module BOAModuleFunctionMatch

Severity level for the BOAModuleFunctionMatch.

This severity level defines 3 levels of severity.

	
class enumerations.severity.severity_function_match.SeverityFunctionMatch(value)

	SeverityFunctionMatch enum.

Severity Enums

	Severity Base (Interface)

	Severity Syslog

Other

	Severity for Module BOAModuleFunctionMatch

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

Auxiliary Module - Pycparser AST Preorder Visitor

Auxiliary Module - Pycparser CFG

Auxiliary Module - Pycparser Util

Auxiliary Modules

	Auxiliary Module - Pycparser AST Preorder Visitor

	Auxiliary Module - Pycparser CFG

	Auxiliary Module - Pycparser Util

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

Main Modules

The modules which BOA uses for making the core works.

Modules

	
	BOA main flow
	
	BOA main flow. It is the entry point.

	
	BOA internals
	
	It has methods which BOA uses in the main flow.

	
	BOA arguments handler
	
	It is an utility which works with ArgParse and helps us to manage the BOA args.

	
	Constants
	
	Constant values definitions.

	
	Rules Manager
	
	It handles the rules files checking they are well formatted and it gives us the information.

	
	Modules Importer
	
	It handles the modules importing, focusing the security modules. It has utilities for importing other modules.

	
	Severity Enums
	
	It contains enumerations which defines different levels of severity.

	
	Exceptions
	
	It defines own exceptions.

	
	Utilities
	
	General utilities.

	
	Auxiliary Modules
	
	It contains auxiliary modules which may be used by any other module.

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

BOAModuleAbstract

BOAM - Function Match

BOAM - CFG

BOAM - CFG

BOAM - Test

Security Modules

Security modules are the main way a user can define its own
modules in order to look for a concrete threat.

These modules can be found in the main directory of BOA,
concretely in the directory “modules”. The files you will find
there will have a name like “boam_whatever.py”, but is not
necessary to follow the nomenclature. You can name your modules
as you like. If you want to write your own, you will have to
store your module in the expected directory
(i.e. /path/to/BOA/modules).

All your security modules will need to inherit from BOAModuleAbstract
in order to work as a security module.

BOA internals

	BOAModuleAbstract

Modules

	BOAM - Function Match

	BOAM - CFG

	BOAM - Test

	BOAM - CFG

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

BOALifeCycle Manager

Lifecycle manager.

This file contains the class BOALifeCycleManager, which
handles the loop which is executed to analyze the language
file.

	
class lifecycles.boalc_manager.BOALifeCycleManager(instances, reports, lifecycle_args, lifecycle_instances, analysis)

	BOALifeCycleManager class.

This class handles the modules intances. Concretely, it
initializes the instances, iterates the processing
throught them, and save the report records.

The steps which are followed depends on the lifecycle being
used by a concrete module.

	
__init__(instances, reports, lifecycle_args, lifecycle_instances, analysis)

	It initializes all the variables which will be used by
the other methods.

	Parameters

	
	instances (list) – module instances that are going to be saved.

	reports (list) – list of Report instances.

	lifecycle_args (dict) – args to be used by the lifecycles.

	lifecycle_instances (list) – instances of lifecycles to
be used by the instances.

	analysis (str) – information about which analysis we are running.

	
__weakref__

	list of weak references to the object (if defined)

	
execute_instance_method(instance, method_name, args, force_invocation)

	It attempts to execute a method of a concrete instance.

	Parameters

	
	instance – initialized instance which a method is going
to be invoked if possible.

	method_name (str) – method which is going to be invoked.

	args – args to be given to the invoked method.

	force_invocation (bool) – force a method invocation
despite something failed in the past (if False, when
a failure happens, a method will not be invoked).

	Returns

	it will return False if: the instance is not in
self.instances, the property stop is True, …
It will return True only if the execution of the given
method could be executed without any exception.

	Return type

	bool

	
get_final_report()

	It returns the final report.

	Returns

	the final report

	Return type

	Report

	
handle_lifecycle()

	This method is the one which should be invoked to
handle the lifecycle.

The way the phases are invoked depends on the lifecycle.

The method that will be invoked is execute_lifecycle,
which is defined in BOALifeCycleAbstract class. In that
method should be defined the phases that are going to be
called.

	Returns

	self.rtn_code

	Return type

	int

	
make_final_report()

	It makes a report which contains all the threat records
contained in all the other reports.

	Returns

	the final report or None

	Return type

	Report

BOALifeCycle Abstract

This file contains the class from which all lifecycles
will have to inherit in order to be executed as a lifecycle.
If a lifecycle does not inherit from the implemented class
in this file, an error will be raised.

	
class lifecycles.boalc_abstract.BOALifeCycleAbstract(instance, report, lifecycle_args, execute_method_callback, analysis)

	BOALifeCycleAbstract class.

This class implements the necessary methods which will be
invoked after by BOALifeCycleManager. Moreover, it defines
variables with important information (e.g. “args” variable
which contains the given arguments throught the rules file).

	
__init__(instance, report, lifecycle_args, execute_method_callback, analysis)

	It initializes the class.

	Parameters

	
	instance – initialized instance to be invoked.

	report (BOAReportAbstract) – report where add found threats.

	lifecycle_args (dict) – args to be used by the lifecycle.

	execute_method_callback (func) – function which will be executed
in order to execute instance.

	analysis (str) – information about which analysis we are running.

	
__weakref__

	list of weak references to the object (if defined)

	
abstract execute_lifecycle()

	Method which defines the concrete lifecycle to be
executed. This method will have to be implemented
by those lifecycles which want to define a new lifecycle.

	
get_name()

	Method which returns the name of the concrete instance.

This method is defined because a security module can only
access method by name (it invokes the methods by a method
which is given by a callback) and no directly access to the
variables.

This method could be invoked by a security modules in order
to, for example, give a concrete error message.

	Returns

	self.who_i_am (i.e. ‘“module_name”.”class_name”’)

	Return type

	str

	
abstract raise_exception_if_non_valid_analysis()

	Method which will be executed when a lifecycle has been initialized
and should raise an exception if the analysis is not valid for the
lifecycle.

	Raises

	BOALCAnalysisException – when the selected analysis is not compatible
 with the lifecycle.

BOALC - Basic

BOALC - Pycparser AST

Lifecycles

These modules are the ones which defines the way the execution is driven.
When you want to perform a concrete execution of your security modules, a
lifecycle might do what you want do. In the lifecycles are defined the methods
and the order in which they will be invoked, and you can take the decision
of what information will need your security modules, use callbacks as
arguments to make a call back to a method of your lifecycle and take that
feedback to your lifecycle for taking decisions, etz.

These modules can be found in the main directory of BOA,
concretely in the directory “lifecycles”. The files you will find
there will have a name like “boalc_whatever.py”, but is not
necessary to follow the nomenclature. You can name your modules
as you like. If you want to write your own, you will have to
store your module in the expected directory
(i.e. /path/to/BOA/lifecycles).

All your lifecycles will need to inherit from BOALifeCycleAbstract in order
to work as a lifecycle.

BOA internals

	BOALifeCycle Manager

	BOALifeCycle Abstract

Modules

	BOALC - Basic

	BOALC - Pycparser AST

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

BOAParserModuleAbstract

BOAPM - Pycparser

Parser Modules

The parser modules are the one which works directly with a
parser in order to process a code file and get processed
data structures. With these datastructures you will be able
to work in your security modules.

You should have a parser module for each programming language
you want to work with, but can have different parser for the
same programming language if you like.

These modules can be found in the main directory of BOA,
concretely in the directory “parser_modules”. The files you will find
there will have a name like “boapm_whatever.py”, but is not
necessary to follow the nomenclature. You can name your modules
as you like. If you want to write your own, you will have to
store your module in the expected directory
(i.e. /path/to/BOA/parser_modules).

All your parser modules will need to inherit from
BOAParserModuleAbstract in order to work as a parser module.

BOA internals

	BOAParserModuleAbstract

Modules

	BOAPM - Pycparser

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

BOAReportAbstract

This file contains the class which is the base for
the Report, which is the class that displays the information
about all the found threats.

	
class reports.boar_abstract.BOAReportAbstract(severity_enum, args)

	BOAReportAbstract class.

It implements the necessary methods to initialize,
fill and display the threats report after the analysis.

If you want to define your own Report class you will have
to define a new class which inherits from this one.

	Raises

	BOAReportException – this exception could be raised
 anywhere in the class.

	
__init__(severity_enum, args)

	It initializes the class with the necessary variables.

	Parameters

	severity_enum (type) – enumeration which will be used
for the threats severity. It has to inherit from
SeverityBase but not be SeverityBase.

	Raises

	
	BOAReportEnumTypeNotExpected – when severity_enum is
 not a type of SeverityBase or is SeverityBase.

	TypeError – when severity_enum is not a type or at
 least not an expected instance.

	
__weakref__

	list of weak references to the object (if defined)

	
add(who, description, severity, advice=None, row=None, col=None, sort_by_severity=True, severity_enum=None)

	It adds a new record to the main report.

	Parameters

	
	who (str) – “module_name.class_name” (without quotes)
format to identify who raised the threat.

	description (str) – description about the found threat.

	severity (SeverityBase) – threat severity.

	advice (str) – advice to solve the threat. It is optional.

	row (int) – threat row. It is optional.

	col (int) – threat col. It is optional.

	sort_by_severity (bool) – if True, the threats will be
added sorting by severity (higher values will be
added first). The default value is True.

	severity_enum (type) – enumeration which will be used
for the threats severity. This arg is intended to
be able to join different Report instances. Default
is None which means to use self.severity_enum.

	Returns

	status code

	Return type

	int

	
append(report_instance, sort_by_severity=True, stop_if_fails=False, who=None)

	It appends other threats report records to this.

The goal of this method is to be able to append multiple reports
which will be created for each module and end up with only a
report to show to the user.

	Parameters

	
	report_instance (Report) – the report to be appended to this.

	sort_by_severity (bool) – if True, the threats will be
added sorting by severity (higher values will be
added first). The default value is True.

	stop_if_fails (bool) – if True and any threat record cannot
be appended, the execution will stop. The default value
if False.

	who (str) – the module name which is going to be used to set
the relation between the module and the report instance.

	Returns

	status code

	Return type

	int

	
abstract display(who, display=True)

	It displays all the threats from a concrete module.

This method is intended to be invoked by display_all.

	Parameters

	
	who (str) – the module which found the threat.

	display (bool) – if True, it displays the threat.

	Raises

	BOAReportWhoNotFound – if the given module is not found.

	Returns

	text to be displayed

	Return type

	str

	
abstract display_all(print_summary=True, display=True)

	It displays all the threats from all the modules.
Moreover, it prints a summary at the end optionally.

This method should invoke display which should
invoke pretty_print_tuple. You can avoid this
overriding the methods using “pass”, but if you do
this, this method will have to make all the work.

	Parameters

	
	print_summary (bool) – if True, it prints a
summary with statistics about all the found
threats.

	display (bool) – if True, it displays the threat.

	Returns

	text to be displayed

	Return type

	str

	
get_severity_enum_instance()

	It returns the severity enumeration instance which
is being used.

	Returns

	severity enumeration being used

	Return type

	SeverityBase

Note

This is the GENERAL severity enum reference, which
may not be what you are looking for. If you want the
severity enum instance of a concrete module, use
get_severity_enum_instance_by_who() instead.

	
get_severity_enum_instance_by_who(who)

	It returns the severity enum instance of a concrete module.

	Parameters

	who (str) – module name in format “module_name.class_name”.

	Returns

	the severity enum instance which is used for
the given module. None if who is not found

	Return type

	SeverityBase

	
get_summary()

	It returns a summary of all the threat records.

	Returns

	summary of threat records. Its key format
is (without quotes) “module_name.class_name” and
the value is a list of tuples

	Return type

	dict

	
get_who()

	It returns the modules which are in the current report.

	Returns

	list containing the modules which are in the
current report

	Return type

	list (str)

	
abstract pretty_print_tuple(t, first_time=False, reported_by=False, display=True)

	It prints a pretty line about a found threat record.

This method is intended to be invoked by display.

The expected format for the tuple is next:

	str: module who raised the threat.

	str: threat description.

	SeverityBase: threat severity.

	str (optional): advice for solving the threat. If it
is not provided, the string “not specified” will be
displayed.

	int (optional): threat row. If it is not provided,
the value -1 will be displayed.

	int (optional): threat col. If it is not provided,
the value -1 will be displayed.

	
	type: SeverityBase type which will be used to display
	the severity. This value is intented to be able to
join different Report instances.

	Parameters

	
	t (tuple) – threat record.

	first_time (bool) – if you want to display a pretty
box around the module name who raised the threat,
this value must be True. The default value is
False.

	reported_by (bool) – if you want to display the module
who raised the threat, this value must be True.
This arg should be used when you want to avoid
the arg first_time. The default value is False.

	display (bool) – if True, it displays the threat.

	Returns

	text to be displayed

	Return type

	str

Note

If you want to show orderly the threats, you should
use first_time=True for the first record and
first_time=False for the rest. If you do not want
to show it orderly, you should use reported_by=True.

	
set_severity_enum_mapping(who, severity_enum_instance)

	It sets the relation between a module and a severity enum.

	Parameters

	
	who (str) – the module name in format “module_name.class_name”.

	severity_enum_instance (SeverityBase) – severity enum instance.

	Returns

	it returns True if the relation was set. False otherwise

	Return type

	bool

BOAR - Stdout

This file contains the BOARStdout class, which
inherits from the abstract Report class. This base
has the goal of report the found threats using the
standard output. It is a basic way of report the
threats.

	
class reports.boar_stdout.BOARStdout(severity_enum, args)

	BOARStdout class.

It implements the necessary methods to initialize,
fill and display the threats report after the analysis.

	
display(who, display=True)

	It displays all the threats from a concrete module.

	Parameters

	
	who (str) – the module which found the threat.

	display (bool) – if True, it displays the threat.

	Raises

	BOAReportWhoNotFound – if the given module is not found.

	Returns

	text to be displayed

	Return type

	str

	
display_all(print_summary=True, display=True)

	It displays all the threats from all the modules.
Moreover, it prints a summary at the end optionally.

	Parameters

	
	print_summary (bool) – if True, it prints a
summary with statistics about all the found
threats.

	display (bool) – if True, it displays the threat.

	Returns

	text to be displayed

	Return type

	str

	
pretty_print_tuple(t, first_time=False, reported_by=False, display=True)

	It prints a pretty line about a found threat record.

The expected format for the tuple is next:

	str: module who raised the threat.

	str: threat description.

	SeverityBase: threat severity.

	str (optional): advice for solving the threat. If it
is not provided, the string “not specified” will be
displayed.

	int (optional): threat row. If it is not provided,
the value -1 will be displayed.

	int (optional): threat col. If it is not provided,
the value -1 will be displayed.

	
	type: SeverityBase type which will be used to display
	the severity. This value is intented to be able to
join different Report instances.

	Parameters

	
	t (tuple) – threat record.

	first_time (bool) – if you want to display a pretty
box around the module name who raised the threat,
this value must be True. The default value is
False.

	reported_by (bool) – if you want to display the module
who raised the threat, this value must be True.
This arg should be used when you want to avoid
the arg first_time. The default value is False.

	display (bool) – if True, it displays the threat.

	Returns

	text to be displayed

	Return type

	str

Note

If you want to show orderly the threats, you should
use first_time=True for the first record and
first_time=False for the rest. If you do not want
to show it orderly, you should use reported_by=True.

BOAR - Basic HTML

This file contains the implementation of the necessary
methods of the report abstract class. This report class
uses HTML files to report about the found threats.

	
class reports.boar_basic_html.BOARBasicHTML(severity_enum, args)

	BOARBasicHTML class.

It implements the necessary methods to alert about
the found threats and interact with the HTML file.

	
display(who, display=True)

	It creates the HTML table for a concrete module.

	Parameters

	
	who (str) – the module which found the threat.

	display (bool) – if True, it displays the threat.

	Raises

	BOAReportWhoNotFound – if the given module is not found.

	Returns

	text to be displayed in HTML format

	Return type

	str

	
display_all(print_summary=True, display=True)

	It displays all the threats from all the modules.
Moreover, it prints a summary at the end optionally.
All in HTML format.

	Parameters

	
	print_summary (bool) – if True, it prints a
summary with statistics about all the found
threats.

	display (bool) – if True, it displays the threat.

	Returns

	text to be displayed in HTML format.

	Return type

	str

	
pretty_print_tuple(t, first_time=False, reported_by=False, display=True)

	It prints a pretty line about a found threat record.

The expected format for the tuple is next:

	str: module who raised the threat.

	str: threat description.

	SeverityBase: threat severity.

	str (optional): advice for solving the threat. If it
is not provided, the string “not specified” will be
displayed.

	int (optional): threat row. If it is not provided,
the value -1 will be displayed.

	int (optional): threat col. If it is not provided,
the value -1 will be displayed.

	
	type: SeverityBase type which will be used to display
	the severity. This value is intented to be able to
join different Report instances.

	Parameters

	
	t (tuple) – threat record.

	first_time (bool) – if you want to display a pretty
box around the module name who raised the threat,
this value must be True. The default value is
False.

	reported_by (bool) – if you want to display the module
who raised the threat, this value must be True.
This arg should be used when you want to avoid
the arg first_time. The default value is False.

	display (bool) – if True, it displays the threat.

	Returns

	text to be displayed in HTML format

	Return type

	str

	
save_html(inner_html)

	It saves the HTML content in the expectified file.

Args “absolute_path” and “filename” has to be defined
in the rules file.

	Parameters

	inner_html (str) – HTML content.

Reports

The reports are the last phase of BOA and is where all the
found threats are displayed. The way the reports can be displayed
is customizable. There are basic Report implementation like
BOARStdout or BOARBasicHTML, but you can define your own.

These modules can be found in the main directory of BOA,
concretely in the directory “reports”. The files you will find
there will have a name like “boar_whatever.py”, but is not
necessary to follow the nomenclature. You can name your modules
as you like. If you want to write your own, you will have to
store your module in the expected directory
(i.e. /path/to/BOA/reports).

All your report modules will need to inherit from BOAReportAbstract
in order to work as a report module.

BOA internals

	BOAReportAbstract

Modules

	BOAR - Stdout

	BOAR - Basic HTML

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

Changelog

You will find here the main changes from one version to others.

Version 0.4

Minnor changes.

Changes:

	Some error codes has been updated.

	When input arguments are not correctly inserted, now
not only argparse displays error message, but also BOA.

Fixed errors:

	When no environment variables was being used for a parser
module in the rules file, the running analysis crashed.

Version 0.3

Dependencies among modules are possible.

Changes:

	The results of a module can be a dependency for others.

Fixed errors:

	Main argument “-\-no-fail” was not working as expected.

	When a module loading failed and the execution continued,
was not being correctly removed.

	Minnor fixes.

Version 0.2

This version has made other elements to be customizable.

Changes:

	
	Support for other programming lenguages.
	
	Customizable parser modules.

	Customizable lifecycles.

	Customizable reports.

Fixed errors:

	When a module could not load properly its arguments, was smashing
all the arguments of the other modules.

	Some checks were not being done to avoid that customizable elements
did not inherit from the defined abstract class.

Version 0.1

This version has finished BOA core implementation.

Changes:

	
	Support for C programming language (with pycparser).
	
	Support only for AST.

	
	Rules files parsing.
	
	Very flexible with arguments for modules.

	Unique lifecycle.

	Multiple modules execution.

	Modules customizable.

	
	Threats report.
	
	Severity customizable.

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

TODO List

Here you will find a list of ideas to be implemented in BOA.
It is not sure that these ideas will be implemented.

	Custom reports (implemented in version 0.2).

	Results from a module as args for other (implemented in version 0.3).

	Defer a module execution.

	Give the user the possibility of disable a false-positive detection.

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

 Python Module Index

 a |
 b |
 c |
 e |
 l |
 m |
 r

 		 	

 		
 a	

 	
 	
 args_manager	

 		 	

 		
 b	

 	
 	
 boa	

 		 	

 		
 c	

 	
 	
 constants	

 		 	

 		
 e	

 	[image: -]
 	
 enumerations	

 	
 	
 enumerations.severity.severity_base	

 	
 	
 enumerations.severity.severity_function_match	

 	
 	
 enumerations.severity.severity_syslog	

 		 	

 		
 l	

 	[image: -]
 	
 lifecycles	

 	
 	
 lifecycles.boalc_abstract	

 	
 	
 lifecycles.boalc_manager	

 		 	

 		
 m	

 	
 	
 modules_importer	

 		 	

 		
 r	

 	[image: -]
 	
 reports	

 	
 	
 reports.boar_abstract	

 	
 	
 reports.boar_basic_html	

 	
 	
 reports.boar_stdout	

 	
 	
 rules_manager	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | M
 | O
 | P
 | R
 | S

_

 	
 	__init__() (args_manager.ArgsManager method)

 	(lifecycles.boalc_abstract.BOALifeCycleAbstract method)

 	(lifecycles.boalc_manager.BOALifeCycleManager method)

 	(modules_importer.ModulesImporter method)

 	(reports.boar_abstract.BOAReportAbstract method)

 	(rules_manager.RulesManager method)

 	
 	__weakref__ (args_manager.ArgsManager attribute)

 	(lifecycles.boalc_abstract.BOALifeCycleAbstract attribute)

 	(lifecycles.boalc_manager.BOALifeCycleManager attribute)

 	(modules_importer.ModulesImporter attribute)

 	(reports.boar_abstract.BOAReportAbstract attribute)

 	(rules_manager.RulesManager attribute)

A

 	
 	add() (reports.boar_abstract.BOAReportAbstract method)

 	append() (reports.boar_abstract.BOAReportAbstract method)

 	
 	
 args_manager

 	module

 	ArgsManager (class in args_manager)

B

 	
 	
 boa

 	module

 	BOALifeCycleAbstract (class in lifecycles.boalc_abstract)

 	
 	BOALifeCycleManager (class in lifecycles.boalc_manager)

 	BOARBasicHTML (class in reports.boar_basic_html)

 	BOAReportAbstract (class in reports.boar_abstract)

 	BOARStdout (class in reports.boar_stdout)

C

 	
 	check() (args_manager.ArgsManager method)

 	check_rules() (rules_manager.RulesManager method)

 	check_rules_arg() (rules_manager.RulesManager method)

 	check_rules_arg_high_level() (rules_manager.RulesManager method)

 	check_rules_arg_recursive() (rules_manager.RulesManager method)

 	check_rules_dynamic_analysis_runner() (rules_manager.RulesManager method)

 	
 	check_rules_init() (rules_manager.RulesManager method)

 	check_rules_modules() (rules_manager.RulesManager method)

 	check_rules_parser() (rules_manager.RulesManager method)

 	check_rules_report() (rules_manager.RulesManager method)

 	close() (rules_manager.RulesManager method)

 	
 constants

 	module

D

 	
 	display() (reports.boar_abstract.BOAReportAbstract method)

 	(reports.boar_basic_html.BOARBasicHTML method)

 	(reports.boar_stdout.BOARStdout method)

 	
 	display_all() (reports.boar_abstract.BOAReportAbstract method)

 	(reports.boar_basic_html.BOARBasicHTML method)

 	(reports.boar_stdout.BOARStdout method)

E

 	
 	
 enumerations.severity.severity_base

 	module

 	
 enumerations.severity.severity_function_match

 	module

 	
 	
 enumerations.severity.severity_syslog

 	module

 	Error (class in constants)

 	execute_instance_method() (lifecycles.boalc_manager.BOALifeCycleManager method)

 	execute_lifecycle() (lifecycles.boalc_abstract.BOALifeCycleAbstract method)

G

 	
 	get_args() (rules_manager.RulesManager method)

 	get_dependencies() (rules_manager.RulesManager method)

 	get_final_report() (lifecycles.boalc_manager.BOALifeCycleManager method)

 	get_instance() (modules_importer.ModulesImporter method)

 	get_module() (modules_importer.ModulesImporter method)

 	get_name() (lifecycles.boalc_abstract.BOALifeCycleAbstract method)

 	get_nloaded() (modules_importer.ModulesImporter method)

 	get_nmodules() (modules_importer.ModulesImporter method)

 	
 	get_not_loaded_modules() (modules_importer.ModulesImporter method)

 	get_report_args() (rules_manager.RulesManager method)

 	get_rules() (rules_manager.RulesManager method)

 	get_runner_args() (rules_manager.RulesManager method)

 	get_severity_enum_instance() (reports.boar_abstract.BOAReportAbstract method)

 	get_severity_enum_instance_by_who() (reports.boar_abstract.BOAReportAbstract method)

 	get_summary() (reports.boar_abstract.BOAReportAbstract method)

 	get_who() (reports.boar_abstract.BOAReportAbstract method)

H

 	
 	handle_lifecycle() (lifecycles.boalc_manager.BOALifeCycleManager method)

I

 	
 	is_module_loaded() (modules_importer.ModulesImporter method)

L

 	
 	
 lifecycles.boalc_abstract

 	module

 	
 lifecycles.boalc_manager

 	module

 	
 	load() (modules_importer.ModulesImporter method)

 	load_and_get_instance() (modules_importer.ModulesImporter class method)

 	load_args() (args_manager.ArgsManager method)

M

 	
 	main() (in module boa)

 	make_final_report() (lifecycles.boalc_manager.BOALifeCycleManager method)

 	manage_args() (in module boa)

 	Meta (class in constants)

 	
 module

 	args_manager

 	boa

 	constants

 	enumerations.severity.severity_base

 	enumerations.severity.severity_function_match

 	enumerations.severity.severity_syslog

 	lifecycles.boalc_abstract

 	lifecycles.boalc_manager

 	modules_importer

 	reports.boar_abstract

 	reports.boar_basic_html

 	reports.boar_stdout

 	rules_manager

 	
 	
 modules_importer

 	module

 	ModulesImporter (class in modules_importer)

O

 	
 	open() (rules_manager.RulesManager method)

 	
 	Other (class in constants)

P

 	
 	parse() (args_manager.ArgsManager method)

 	pretty_print_tuple() (reports.boar_abstract.BOAReportAbstract method)

 	(reports.boar_basic_html.BOARBasicHTML method)

 	(reports.boar_stdout.BOARStdout method)

R

 	
 	raise_exception_if_non_valid_analysis() (lifecycles.boalc_abstract.BOALifeCycleAbstract method)

 	read() (rules_manager.RulesManager method)

 	Regex (class in constants)

 	
 reports.boar_abstract

 	module

 	
 reports.boar_basic_html

 	module

 	
 	
 reports.boar_stdout

 	module

 	
 rules_manager

 	module

 	RulesManager (class in rules_manager)

S

 	
 	save_html() (reports.boar_basic_html.BOARBasicHTML method)

 	set_args() (rules_manager.RulesManager method)

 	set_dependencies() (rules_manager.RulesManager method)

 	
 	set_severity_enum_mapping() (reports.boar_abstract.BOAReportAbstract method)

 	SeverityBase (class in enumerations.severity.severity_base)

 	SeverityFunctionMatch (class in enumerations.severity.severity_function_match)

 	SeveritySyslog (class in enumerations.severity.severity_syslog)

Modules

	Main Modules

	Lifecycles

	Parser Modules

	Security Modules

	Reports

Other

	Changelog

	TODO List

Indices and Tables

	Index

	Module Index

	Search Page

 _static/minus.png

_static/plus.png

_images/BOA_architecture_transparent_background.png
Concrete Modules

BOA

use

use

_static/file.png

nav.xhtml

 Table of Contents

 		
 BOA documentation

