
BOA
Release 0.3

Cristian Garcia Romero

Jan 28, 2022

CONTENTS

1 BOA main flow 3

2 BOA internals 5

3 BOA arguments handler 7

4 Constants 9

5 Rules Manager 11

6 Modules Importer 17

7 Exceptions 19

8 Utilities 21

9 Severity Base (Interface) 23

10 Severity Syslog 25

11 Severity for Module BOAModuleFunctionMatch 27

12 Severity Enums 29

13 Other 31

14 Modules 33

15 Other 35

16 Indices and Tables 37

17 Auxiliary Module - Pycparser AST Preorder Visitor 39

18 Auxiliary Module - Pycparser CFG 41

19 Auxiliary Module - Pycparser Util 43

20 Auxiliary Modules 45

21 Modules 47

22 Other 49

i

23 Indices and Tables 51

24 Main Modules 53
24.1 Modules . 53

25 Modules 55

26 Other 57

27 Indices and Tables 59

28 BOAModuleAbstract 61

29 BOAM - Function Match 63

30 BOAM - CFG 65

31 BOAM - CFG 67

32 BOAM - Test 69

33 Security Modules 71
33.1 BOA internals . 71
33.2 Modules . 71

34 Modules 73

35 Other 75

36 Indices and Tables 77

37 BOALifeCycle Manager 79

38 BOALifeCycle Abstract 81

39 BOALC - Basic 83

40 BOALC - Pycparser AST 85

41 Lifecycles 87
41.1 BOA internals . 87
41.2 Modules . 87

42 Modules 89

43 Other 91

44 Indices and Tables 93

45 BOAParserModuleAbstract 95

46 BOAPM - Pycparser 97

47 Parser Modules 99
47.1 BOA internals . 99
47.2 Modules . 99

48 Modules 101

ii

49 Other 103

50 Indices and Tables 105

51 BOAReportAbstract 107

52 BOAR - Stdout 111

53 BOAR - Basic HTML 113

54 Reports 115
54.1 BOA internals . 115
54.2 Modules . 115

55 Modules 117

56 Other 119

57 Indices and Tables 121

58 Changelog 123
58.1 Version 0.4 . 123
58.2 Version 0.3 . 123
58.3 Version 0.2 . 123
58.4 Version 0.1 . 124

59 Modules 125

60 Other 127

61 Indices and Tables 129

62 TODO List 131

63 Modules 133

64 Other 135

65 Indices and Tables 137

66 Modules 139

67 Other 141

68 Indices and Tables 143

Python Module Index 145

Index 147

iii

iv

BOA, Release 0.3

BOA (Buffer Overflow Annihilator) is a vulnerability analyzer of general purpose. It is written in Python, and the main
principle which it has coded has been to give the maximum flexibility to the user, and for that reason, modularity is a
BOA’s priority. Through dynamic module loading, it is possible to use the language parser which the user wants and
use it to focus their own security needs.

Fig. 1: BOA Architecture

CONTENTS 1

BOA, Release 0.3

2 CONTENTS

CHAPTER

ONE

BOA MAIN FLOW

BOA main file.

This file handles the higher level interaction with BOA.

Main tasks:

• It handles args.

• It handles runners modules.

• It handles code modules (BOA’s goal).

• It handles the general flow.

boa.main()
It handles the main BOA’s flow at a high level.

Returns status code

Return type int

boa.manage_args()
It handles BOA’s general args through ArgsManager class.

Returns status code

Return type int

3

BOA, Release 0.3

4 Chapter 1. BOA main flow

CHAPTER

TWO

BOA INTERNALS

5

BOA, Release 0.3

6 Chapter 2. BOA internals

CHAPTER

THREE

BOA ARGUMENTS HANDLER

BOA arguments manager.

This file handles the arguments which are provided to BOA.

Concretely, the ArgsManager class loads, parses and checks the arguments. The arguments are defined in this file

class args_manager.ArgsManager
ArgsManager class.

It handles the arguments provided to BOA CLI.

__init__()
It creates the ArgParse parser object.

__weakref__
list of weak references to the object (if defined)

check()
It checks if the arguments are the expected type.

Concretely, in this method it is checked if the arguments are an instance of argparse.Namespace.

Returns status code

Return type int

load_args()
It creates the list of arguments.

parse()
It parses the arguments.

Returns status code

Return type int

7

BOA, Release 0.3

8 Chapter 3. BOA arguments handler

CHAPTER

FOUR

CONSTANTS

File with constant values.

This file contains constant information about BOA.

It contains multiple classes:

1. Meta class: it contains information about BOA.

2. Error class: it contains status code with a descriptive name.

3. Regex class: it contains regex strings.

4. Other class: it contains all the constants whose goal does not match with the other classes.

class constants.Error
Error class.

It contains information about the different error status code we can find through BOA’s code. The information
that it is in this class are just numeric status error with a descriptive name to know exactly the cause of the error.

When BOA finishes the execution, it displays the status code. If the status code displayed matches with
Meta.ok_code, it means that everything went fine. Otherwise, check the status code within this class.

class constants.Meta
Meta class.

It contains information about BOA like the version, the description, . . .

class constants.Other
Other class.

This class contains all the other information that does not match with the goal of the other classes. Or does not
have a concrete goal.

class constants.Regex
Regex class.

This class contains the regex which are used by other BOA modules.

9

BOA, Release 0.3

10 Chapter 4. Constants

CHAPTER

FIVE

RULES MANAGER

Rules Manager file.

This file contains the necessary methods in the RulesManager class to load, check and process the rules file.

The file rules should contain all the necessary information to execute a concrete analysis. However, multiple and
independent analysis might be executed.

Each rules file should contain a complete analysis technique defined. If multiple modules are being used, this should
be to reach the goal of execute a complex but concrete analysis.

class rules_manager.RulesManager(rules_file)
RulesManager class.

This class defines the necessary methods to load, check and process the rules from a file.

__init__(rules_file)
It initializes the necessary variables.

Parameters rules_file (str) – path to the rules file.

__weakref__
list of weak references to the object (if defined)

check_rules(save_args)
It checks if the rules file contains the mandatory rules. The checking is performed by name and elements
quantity, so it has to match in both properties.

If self.rules is None, the checking fails.

Parameters save_args (bool) – it indicates that the arguments have to be saved while they are
being checked.

Returns true if the rules are valid; false otherwise

Return type bool

check_rules_arg(arg, father, grandpa, save_args, args_reference, sort_args)
It checks if the <args> elements are correct recursevely.

This method works recursively making the following calls:

• check_rules_arg -> check_rules_arg_recursive

• check_rules_arg_recursive -> check_rules_arg

What this method makes is checking if the <args> elements which are inside are correct and, optionally,
save them to being used by the target module which is specified in the rules file.

If the arguments want to be saved, the order may not be the expected. If the <args> elements are mixed,
the predefined order will be:

11

BOA, Release 0.3

1. Dictionaries

2. Lists

3. Elements

If you want to have the elements in the correct order which you wrote, you can avoid mixing the elements
or use the sort_args argument to have a partial sorting (this partial sorting makes worse the performance
while checking). We say “partial” because the result will be that if you are mixing elements, all them will
be grouped and will appear in the order which the first type of element appeared.

Parameters

• arg – current arg which is being checked (processed recursively).

• father (str) – arg’s father.

• grandpa (str) – arg’s grandpa; father’s father.

• save_args (bool) – it indicates if you want to save the args while they are being checked.

• args_reference – if save_args is True, this is the concrete arg reference which it changes
while recursion is being processed. It changes the reference from call to call to save the
concrete args here.

• sort_args (bool) – it indicates if you want a partial sorting when you mix different type
of elements.

Example

<args>

<dict>

<list name=”l1”></list>

<dict name=”d”></dict>

<element name=”e” value=”v” />

<list name=”l2”></list>

</dict>

</args>

Unsorted result: {“d”: {}, “l1”: [], “l2”: [], “e”: “v”}

Partial sorted result: {“l1”: [], “l2”: [], “d”: {}, “e”: “v”}

Returns true if the arguments are valid; false otherwise

Return type bool

check_rules_arg_high_level(dict_tag, parent_tag_name, tag_prefix, save_args)
This is the method that should be invoked when you want to check, and optionally parse, the arguments
from the rules file.

Raises

• BOARulesIncomplete – when the number of expected mandatory rules does not match
with the actual number of rules or when a concrete rule is not found.

• BOARulesUnexpectedFormat – when the format of a rule is not the expected.

• BOARulesError – when an non-specific error happens.

12 Chapter 5. Rules Manager

BOA, Release 0.3

check_rules_arg_recursive(arg, element, father, arg_reference, args_reference, save_args, sort_args)
This method is used by check_rules_arg method.

This method wraps the common behaviour for saving the arguments references and makes the necessary
recursive calls for each element. Moreover, it checks that the arguments, depending on the concrete element,
contains the expected attributes (e.g. a dictionary’s element contains a name attribute).

For details, check check_rules_arg documentation.

Parameters

• arg – current arg which is being checked (processed recursively).

• element (str) – the concrete type of element which is being given. It may be “dict”, “list”
or None. If None, it indicates that the element is a “element”.

• father (str) – arg’s father.

• arg_reference – the new reference which will be appended to args_reference.

• args_reference – if save_args is True, this is the concrete arg reference which it changes
while recursion is being processed. It changes the reference from call to call to save the
concrete args here.

• save_args (bool) – it indicates if you want to save the args while they are being checked.

• sort_args (bool) – it indicates if you want a partial sorting when you mix different type
of elements.

Returns true if the arguments are valid; false otherwise

Return type bool

check_rules_dynamic_analysis_runner(save_args, runner_module)
It makes the checks relative to the runner modules which are used in the dynamic analysis.

Parameters

• save_args (bool) – it indicates that the arguments have to be saved while they are being
checked.

• runner_module (str) – runner which is going to be processed in order to check the rules.

Raises

• BOARulesIncomplete – when the number of expected mandatory rules does not match
with the actual number of rules or when a concrete rule is not found.

• BOARulesError – when a semantic rule is broken. You have to follow the rules documen-
tation to avoid this exception.

• KeyError – if runner_module is not an expected runner.

check_rules_init()
It makes the initial checks.

Raises BOARulesIncomplete – when the number of expected mandatory rules does not match
with the actual number of rules or when a concrete rule is not found.

check_rules_modules(save_args)
It makes the checks relative to the modules.

Parameters save_args (bool) – it indicates that the arguments have to be saved while they are
being checked.

Raises

13

BOA, Release 0.3

• BOARulesIncomplete – when the number of expected mandatory rules does not match
with the actual number of rules or when a concrete rule is not found.

• BOARulesUnexpectedFormat – when the format of a rule is not the expected.

• BOARulesError – when an non-specific error happens.

check_rules_parser()
It makes the checks relative to the parser.

Raises BOARulesIncomplete – when the number of expected mandatory rules does not match
with the actual number of rules or when a concrete rule is not found.

check_rules_report(save_args)
It makes the checks relative to the report.

Parameters save_args (bool) – it indicates that the arguments have to be saved while they are
being checked.

Raises

• BOARulesIncomplete – when the number of expected mandatory rules does not match
with the actual number of rules or when a concrete rule is not found.

• BOARulesError – when a semantic rule is broken. You have to follow the rules documen-
tation to avoid this exception.

close()
It closes the rules file to release the resource.

Returns status code

Return type int

get_args(module=None)
It returns the args for a concrete module.

Parameters module (str) – module from which args are going to be returned.
The expected format is (without quotes): “module_name.class_name”. Check
utils.get_name_from_class_instance. The default value is None.

Returns module args or all the modules args; None if a module were specified and could not find
it

Return type dict

get_dependencies(module=None)
It returns the dependencies for a concrete module.

Parameters module (str) – module from which args are going to be returned.
The expected format is (without quotes): “module_name.class_name”. Check
utils.get_name_from_class_instance. The default value is None.

Returns module dependencies or all the modules dependencies; None if a module were specified
and could not find it, what means that the module does not have dependencies

Return type dict

get_report_args()
It returns the args for the Report instance.

Returns report args

Return type dict

14 Chapter 5. Rules Manager

BOA, Release 0.3

get_rules(path=None, list_type=False)
It returns the rules.

The rules can be obtained with a concrete path, which means that you can obtain the rules you want directly,
without go through them. The path is a string which will be splited with ‘.’.

Parameters

• path (str) – the returned rules will be from a starting point. If you to get all the modules
rules, the path has to have the value “boa_rules.modules.module”. The default value is
None.

• list_type (bool) – the returned rules will be wrapped in a list. The default value is False.

Returns rules from the rules file. If list_type is True, the returning type will not be dict but list.

Return type dict

get_runner_args(runner_module)
It returns the args of a runner module.

Parameters runner_module (str) – key of self.runner_args which is where the parameters are
stored.

Returns args if they exist, but empty dict and logging warning if does not

Return type dict

open()
It opens the rules file, checking if exists first.

Returns status code

Return type int

read()
It reads the rules file and saves the necessary information.

Returns status code

Return type int

set_args(module, arg)
It sets the arguments for a concrete module. This method should only be used for internal management.

Parameters

• module (str) – instance identification as string. The expected format is (without quotes):
“module_name .class_name”. Check utils.get_name_from_class_instance.

• arg (dict) – the new args for the module.

Returns True if the args could be set; False otherwise

Return type bool

set_dependencies(module, dependencies)
It adds dependencies for a concrete module. This method should only be used for internal management.

Parameters

• module (str) – instance identification as string. The expected format is (without quotes):
“module_name .class_name”. Check utils.get_name_from_class_instance.

• dependencies (dict) – the new dependencies for the module.

Returns True if the dependencies could be apppended; False otherwise

15

BOA, Release 0.3

Return type bool

16 Chapter 5. Rules Manager

CHAPTER

SIX

MODULES IMPORTER

Module Imports.

This file contains the ModulesImporter class.

class modules_importer.ModulesImporter(modules, filenames=None)
ModulesImporter class.

This class has the goal of loading the modules which are specified in the given rules.

__init__(modules, filenames=None)
It initializes the class.

Parameters

• modules (list) – modules (str) which should be loaded after.

• filenames (list) – modules filenames (str). The default value is None, and if this value
remains, modules will be used as filename.

__weakref__
list of weak references to the object (if defined)

get_instance(module_name, class_name)
It returns an instance of the class of a module.

Parameters

• module_name (str) – module name which should contains class_name.

• class_name (str) – class name which is attempted to return.

Returns Module instance if module is loaded; None otherwise

get_module(module_name)
It returns an already loaded module.

Parameters module_name (str) – module name which is attempted to return.

Raises

• BOAModuleNotLoaded – when it is attempted to get a module which is not loaded.

• Exception – when a module is detected as loaded but it is not loaded in sys.modules. It
should not happen.

Returns Module if loaded; None otherwise

get_nloaded()
It returns the number of loaded modules at the moment of the calling.

Returns loaded modules

17

BOA, Release 0.3

Return type int

get_nmodules()
It returns the number of modules which were suplied to the class to be loaded.

A different variable is being used instead of len() method because the variable which contains the methods
to be loaded mutates through the execution of the class methods.

Returns initial modules to be loaded

Return type int

get_not_loaded_modules()
It returns the modules which have not been loaded.

Returns not loaded modules

Return type list

is_module_loaded(module_name)
It checks if a concrete module is already loaded.

Parameters module_name (str) – module to check if it is loaded.

Returns module_name is loaded

Return type bool

load(module_subdir=None)
It attempts to load all the modules which were specified.

This method iterates through self.modules to attempt to loading the modules. First, it checks if the module
is already loaded. Then, it attempts to load the module and if it is not able to, it skips the current module
to next.

The modules must be in Other.modules_directory directory.

Parameters module_subdir (str) – subdir of Other.modules_directory where the module will
be looked for instead of directly look for in Other.modules_directory

classmethod load_and_get_instance(module, absolute_file_path, class_name, verbose=True)
Class method which attempts to load a module and return an instance of it.

If the module is already loaded, it will skip the loading part and it will continue to next phase: get the
instance.

Parameters

• module (str) – module name to be loaded.

• absolute_file_path (str) – full path to the file which contains the module to be loaded.

• class_name (str) – class name inside the module which is going to be instantiated.

• verbose (bool) – if True, a message will be displayed if the loading success.

Returns an instance of “module.class” which has been specified or None if could not.

Return type instance

18 Chapter 6. Modules Importer

CHAPTER

SEVEN

EXCEPTIONS

19

BOA, Release 0.3

20 Chapter 7. Exceptions

CHAPTER

EIGHT

UTILITIES

21

BOA, Release 0.3

22 Chapter 8. Utilities

CHAPTER

NINE

SEVERITY BASE (INTERFACE)

Severity levels.

In this file is defined the base enum for defining severity levels, whose can be overridden and new ones can be defined.

class enumerations.severity.severity_base.SeverityBase(value)
SeverityBase class (enum).

You can inherit from this class and implement your own severity levels. An approach could be to use the standard
risk model (risk = likelyhood [0-N] * impact [0-N]). To allow the inheritance we have to let this enum empty.

The enum values mean the priority (higher means more critical). This values will be used for sorting the records.

23

BOA, Release 0.3

24 Chapter 9. Severity Base (Interface)

CHAPTER

TEN

SEVERITY SYSLOG

Severity level based on syslog (RFC 5424).

This severity level defines 8 levels of severity.

class enumerations.severity.severity_syslog.SeveritySyslog(value)
SeveritySyslog class (enum).

There are multiple ways of defining severity levels. For the severity base we are using an approach based on
Syslog Message Severities (RFC 5424).

25

BOA, Release 0.3

26 Chapter 10. Severity Syslog

CHAPTER

ELEVEN

SEVERITY FOR MODULE BOAMODULEFUNCTIONMATCH

Severity level for the BOAModuleFunctionMatch.

This severity level defines 3 levels of severity.

class enumerations.severity.severity_function_match.SeverityFunctionMatch(value)
SeverityFunctionMatch enum.

27

BOA, Release 0.3

28 Chapter 11. Severity for Module BOAModuleFunctionMatch

CHAPTER

TWELVE

SEVERITY ENUMS

• Severity Base (Interface)

• Severity Syslog

29

BOA, Release 0.3

30 Chapter 12. Severity Enums

CHAPTER

THIRTEEN

OTHER

• Severity for Module BOAModuleFunctionMatch

31

BOA, Release 0.3

32 Chapter 13. Other

CHAPTER

FOURTEEN

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

33

BOA, Release 0.3

34 Chapter 14. Modules

CHAPTER

FIFTEEN

OTHER

• Changelog

• TODO List

35

BOA, Release 0.3

36 Chapter 15. Other

CHAPTER

SIXTEEN

INDICES AND TABLES

• genindex

• modindex

• search

37

BOA, Release 0.3

38 Chapter 16. Indices and Tables

CHAPTER

SEVENTEEN

AUXILIARY MODULE - PYCPARSER AST PREORDER VISITOR

39

BOA, Release 0.3

40 Chapter 17. Auxiliary Module - Pycparser AST Preorder Visitor

CHAPTER

EIGHTEEN

AUXILIARY MODULE - PYCPARSER CFG

41

BOA, Release 0.3

42 Chapter 18. Auxiliary Module - Pycparser CFG

CHAPTER

NINETEEN

AUXILIARY MODULE - PYCPARSER UTIL

43

BOA, Release 0.3

44 Chapter 19. Auxiliary Module - Pycparser Util

CHAPTER

TWENTY

AUXILIARY MODULES

• Auxiliary Module - Pycparser AST Preorder Visitor

• Auxiliary Module - Pycparser CFG

• Auxiliary Module - Pycparser Util

45

BOA, Release 0.3

46 Chapter 20. Auxiliary Modules

CHAPTER

TWENTYONE

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

47

BOA, Release 0.3

48 Chapter 21. Modules

CHAPTER

TWENTYTWO

OTHER

• Changelog

• TODO List

49

BOA, Release 0.3

50 Chapter 22. Other

CHAPTER

TWENTYTHREE

INDICES AND TABLES

• genindex

• modindex

• search

51

BOA, Release 0.3

52 Chapter 23. Indices and Tables

CHAPTER

TWENTYFOUR

MAIN MODULES

The modules which BOA uses for making the core works.

24.1 Modules

• BOA main flow

– BOA main flow. It is the entry point.

• BOA internals

– It has methods which BOA uses in the main flow.

• BOA arguments handler

– It is an utility which works with ArgParse and helps us to manage the BOA args.

• Constants

– Constant values definitions.

• Rules Manager

– It handles the rules files checking they are well formatted and it gives us the information.

• Modules Importer

– It handles the modules importing, focusing the security modules. It has utilities for importing other
modules.

• Severity Enums

– It contains enumerations which defines different levels of severity.

• Exceptions

– It defines own exceptions.

• Utilities

– General utilities.

• Auxiliary Modules

– It contains auxiliary modules which may be used by any other module.

53

BOA, Release 0.3

54 Chapter 24. Main Modules

CHAPTER

TWENTYFIVE

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

55

BOA, Release 0.3

56 Chapter 25. Modules

CHAPTER

TWENTYSIX

OTHER

• Changelog

• TODO List

57

BOA, Release 0.3

58 Chapter 26. Other

CHAPTER

TWENTYSEVEN

INDICES AND TABLES

• genindex

• modindex

• search

59

BOA, Release 0.3

60 Chapter 27. Indices and Tables

CHAPTER

TWENTYEIGHT

BOAMODULEABSTRACT

61

BOA, Release 0.3

62 Chapter 28. BOAModuleAbstract

CHAPTER

TWENTYNINE

BOAM - FUNCTION MATCH

63

BOA, Release 0.3

64 Chapter 29. BOAM - Function Match

CHAPTER

THIRTY

BOAM - CFG

65

BOA, Release 0.3

66 Chapter 30. BOAM - CFG

CHAPTER

THIRTYONE

BOAM - CFG

67

BOA, Release 0.3

68 Chapter 31. BOAM - CFG

CHAPTER

THIRTYTWO

BOAM - TEST

69

BOA, Release 0.3

70 Chapter 32. BOAM - Test

CHAPTER

THIRTYTHREE

SECURITY MODULES

Security modules are the main way a user can define its own modules in order to look for a concrete threat.

These modules can be found in the main directory of BOA, concretely in the directory “modules”. The files you will
find there will have a name like “boam_whatever.py”, but is not necessary to follow the nomenclature. You can name
your modules as you like. If you want to write your own, you will have to store your module in the expected directory
(i.e. /path/to/BOA/modules).

All your security modules will need to inherit from BOAModuleAbstract in order to work as a security module.

33.1 BOA internals

• BOAModuleAbstract

33.2 Modules

• BOAM - Function Match

• BOAM - CFG

• BOAM - Test

• BOAM - CFG

71

BOA, Release 0.3

72 Chapter 33. Security Modules

CHAPTER

THIRTYFOUR

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

73

BOA, Release 0.3

74 Chapter 34. Modules

CHAPTER

THIRTYFIVE

OTHER

• Changelog

• TODO List

75

BOA, Release 0.3

76 Chapter 35. Other

CHAPTER

THIRTYSIX

INDICES AND TABLES

• genindex

• modindex

• search

77

BOA, Release 0.3

78 Chapter 36. Indices and Tables

CHAPTER

THIRTYSEVEN

BOALIFECYCLE MANAGER

Lifecycle manager.

This file contains the class BOALifeCycleManager, which handles the loop which is executed to analyze the language
file.

class lifecycles.boalc_manager.BOALifeCycleManager(instances, reports, lifecycle_args,
lifecycle_instances, analysis)

BOALifeCycleManager class.

This class handles the modules intances. Concretely, it initializes the instances, iterates the processing throught
them, and save the report records.

The steps which are followed depends on the lifecycle being used by a concrete module.

__init__(instances, reports, lifecycle_args, lifecycle_instances, analysis)
It initializes all the variables which will be used by the other methods.

Parameters

• instances (list) – module instances that are going to be saved.

• reports (list) – list of Report instances.

• lifecycle_args (dict) – args to be used by the lifecycles.

• lifecycle_instances (list) – instances of lifecycles to be used by the instances.

• analysis (str) – information about which analysis we are running.

__weakref__
list of weak references to the object (if defined)

execute_instance_method(instance, method_name, args, force_invocation)
It attempts to execute a method of a concrete instance.

Parameters

• instance – initialized instance which a method is going to be invoked if possible.

• method_name (str) – method which is going to be invoked.

• args – args to be given to the invoked method.

• force_invocation (bool) – force a method invocation despite something failed in the
past (if False, when a failure happens, a method will not be invoked).

Returns it will return False if: the instance is not in self.instances, the property stop is True, . . .
It will return True only if the execution of the given method could be executed without any
exception.

Return type bool

79

BOA, Release 0.3

get_final_report()
It returns the final report.

Returns the final report

Return type Report

handle_lifecycle()
This method is the one which should be invoked to handle the lifecycle.

The way the phases are invoked depends on the lifecycle.

The method that will be invoked is execute_lifecycle, which is defined in BOALifeCycleAbstract class. In
that method should be defined the phases that are going to be called.

Returns self.rtn_code

Return type int

make_final_report()
It makes a report which contains all the threat records contained in all the other reports.

Returns the final report or None

Return type Report

80 Chapter 37. BOALifeCycle Manager

CHAPTER

THIRTYEIGHT

BOALIFECYCLE ABSTRACT

This file contains the class from which all lifecycles will have to inherit in order to be executed as a lifecycle. If a
lifecycle does not inherit from the implemented class in this file, an error will be raised.

class lifecycles.boalc_abstract.BOALifeCycleAbstract(instance, report, lifecycle_args,
execute_method_callback, analysis)

BOALifeCycleAbstract class.

This class implements the necessary methods which will be invoked after by BOALifeCycleManager. Moreover,
it defines variables with important information (e.g. “args” variable which contains the given arguments throught
the rules file).

__init__(instance, report, lifecycle_args, execute_method_callback, analysis)
It initializes the class.

Parameters

• instance – initialized instance to be invoked.

• report (BOAReportAbstract) – report where add found threats.

• lifecycle_args (dict) – args to be used by the lifecycle.

• execute_method_callback (func) – function which will be executed in order to execute
instance.

• analysis (str) – information about which analysis we are running.

__weakref__
list of weak references to the object (if defined)

abstract execute_lifecycle()
Method which defines the concrete lifecycle to be executed. This method will have to be implemented by
those lifecycles which want to define a new lifecycle.

get_name()
Method which returns the name of the concrete instance.

This method is defined because a security module can only access method by name (it invokes the methods
by a method which is given by a callback) and no directly access to the variables.

This method could be invoked by a security modules in order to, for example, give a concrete error message.

Returns self.who_i_am (i.e. ‘“module_name”.”class_name”’)

Return type str

abstract raise_exception_if_non_valid_analysis()
Method which will be executed when a lifecycle has been initialized and should raise an exception if the
analysis is not valid for the lifecycle.

81

BOA, Release 0.3

Raises BOALCAnalysisException – when the selected analysis is not compatible with the life-
cycle.

82 Chapter 38. BOALifeCycle Abstract

CHAPTER

THIRTYNINE

BOALC - BASIC

83

BOA, Release 0.3

84 Chapter 39. BOALC - Basic

CHAPTER

FORTY

BOALC - PYCPARSER AST

85

BOA, Release 0.3

86 Chapter 40. BOALC - Pycparser AST

CHAPTER

FORTYONE

LIFECYCLES

These modules are the ones which defines the way the execution is driven. When you want to perform a concrete
execution of your security modules, a lifecycle might do what you want do. In the lifecycles are defined the methods
and the order in which they will be invoked, and you can take the decision of what information will need your security
modules, use callbacks as arguments to make a call back to a method of your lifecycle and take that feedback to your
lifecycle for taking decisions, etz.

These modules can be found in the main directory of BOA, concretely in the directory “lifecycles”. The files you will
find there will have a name like “boalc_whatever.py”, but is not necessary to follow the nomenclature. You can name
your modules as you like. If you want to write your own, you will have to store your module in the expected directory
(i.e. /path/to/BOA/lifecycles).

All your lifecycles will need to inherit from BOALifeCycleAbstract in order to work as a lifecycle.

41.1 BOA internals

• BOALifeCycle Manager

• BOALifeCycle Abstract

41.2 Modules

• BOALC - Basic

• BOALC - Pycparser AST

87

BOA, Release 0.3

88 Chapter 41. Lifecycles

CHAPTER

FORTYTWO

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

89

BOA, Release 0.3

90 Chapter 42. Modules

CHAPTER

FORTYTHREE

OTHER

• Changelog

• TODO List

91

BOA, Release 0.3

92 Chapter 43. Other

CHAPTER

FORTYFOUR

INDICES AND TABLES

• genindex

• modindex

• search

93

BOA, Release 0.3

94 Chapter 44. Indices and Tables

CHAPTER

FORTYFIVE

BOAPARSERMODULEABSTRACT

95

BOA, Release 0.3

96 Chapter 45. BOAParserModuleAbstract

CHAPTER

FORTYSIX

BOAPM - PYCPARSER

97

BOA, Release 0.3

98 Chapter 46. BOAPM - Pycparser

CHAPTER

FORTYSEVEN

PARSER MODULES

The parser modules are the one which works directly with a parser in order to process a code file and get processed
data structures. With these datastructures you will be able to work in your security modules.

You should have a parser module for each programming language you want to work with, but can have different parser
for the same programming language if you like.

These modules can be found in the main directory of BOA, concretely in the directory “parser_modules”. The files
you will find there will have a name like “boapm_whatever.py”, but is not necessary to follow the nomenclature. You
can name your modules as you like. If you want to write your own, you will have to store your module in the expected
directory (i.e. /path/to/BOA/parser_modules).

All your parser modules will need to inherit from BOAParserModuleAbstract in order to work as a parser module.

47.1 BOA internals

• BOAParserModuleAbstract

47.2 Modules

• BOAPM - Pycparser

99

BOA, Release 0.3

100 Chapter 47. Parser Modules

CHAPTER

FORTYEIGHT

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

101

BOA, Release 0.3

102 Chapter 48. Modules

CHAPTER

FORTYNINE

OTHER

• Changelog

• TODO List

103

BOA, Release 0.3

104 Chapter 49. Other

CHAPTER

FIFTY

INDICES AND TABLES

• genindex

• modindex

• search

105

BOA, Release 0.3

106 Chapter 50. Indices and Tables

CHAPTER

FIFTYONE

BOAREPORTABSTRACT

This file contains the class which is the base for the Report, which is the class that displays the information about all
the found threats.

class reports.boar_abstract.BOAReportAbstract(severity_enum, args)
BOAReportAbstract class.

It implements the necessary methods to initialize, fill and display the threats report after the analysis.

If you want to define your own Report class you will have to define a new class which inherits from this one.

Raises BOAReportException – this exception could be raised anywhere in the class.

__init__(severity_enum, args)
It initializes the class with the necessary variables.

Parameters severity_enum (type) – enumeration which will be used for the threats severity.
It has to inherit from SeverityBase but not be SeverityBase.

Raises

• BOAReportEnumTypeNotExpected – when severity_enum is not a type of SeverityBase
or is SeverityBase.

• TypeError – when severity_enum is not a type or at least not an expected instance.

__weakref__
list of weak references to the object (if defined)

add(who, description, severity, advice=None, row=None, col=None, sort_by_severity=True,
severity_enum=None)
It adds a new record to the main report.

Parameters

• who (str) – “module_name.class_name” (without quotes) format to identify who raised
the threat.

• description (str) – description about the found threat.

• severity (SeverityBase) – threat severity.

• advice (str) – advice to solve the threat. It is optional.

• row (int) – threat row. It is optional.

• col (int) – threat col. It is optional.

• sort_by_severity (bool) – if True, the threats will be added sorting by severity (higher
values will be added first). The default value is True.

107

BOA, Release 0.3

• severity_enum (type) – enumeration which will be used for the threats severity. This
arg is intended to be able to join different Report instances. Default is None which means
to use self.severity_enum.

Returns status code

Return type int

append(report_instance, sort_by_severity=True, stop_if_fails=False, who=None)
It appends other threats report records to this.

The goal of this method is to be able to append multiple reports which will be created for each module and
end up with only a report to show to the user.

Parameters

• report_instance (Report) – the report to be appended to this.

• sort_by_severity (bool) – if True, the threats will be added sorting by severity (higher
values will be added first). The default value is True.

• stop_if_fails (bool) – if True and any threat record cannot be appended, the execution
will stop. The default value if False.

• who (str) – the module name which is going to be used to set the relation between the
module and the report instance.

Returns status code

Return type int

abstract display(who, display=True)
It displays all the threats from a concrete module.

This method is intended to be invoked by display_all.

Parameters

• who (str) – the module which found the threat.

• display (bool) – if True, it displays the threat.

Raises BOAReportWhoNotFound – if the given module is not found.

Returns text to be displayed

Return type str

abstract display_all(print_summary=True, display=True)
It displays all the threats from all the modules. Moreover, it prints a summary at the end optionally.

This method should invoke display which should invoke pretty_print_tuple. You can avoid this overriding
the methods using “pass”, but if you do this, this method will have to make all the work.

Parameters

• print_summary (bool) – if True, it prints a summary with statistics about all the found
threats.

• display (bool) – if True, it displays the threat.

Returns text to be displayed

Return type str

get_severity_enum_instance()
It returns the severity enumeration instance which is being used.

108 Chapter 51. BOAReportAbstract

BOA, Release 0.3

Returns severity enumeration being used

Return type SeverityBase

Note: This is the GENERAL severity enum reference, which may not be what you are looking for. If you
want the severity enum instance of a concrete module, use get_severity_enum_instance_by_who() instead.

get_severity_enum_instance_by_who(who)
It returns the severity enum instance of a concrete module.

Parameters who (str) – module name in format “module_name.class_name”.

Returns the severity enum instance which is used for the given module. None if who is not found

Return type SeverityBase

get_summary()
It returns a summary of all the threat records.

Returns summary of threat records. Its key format is (without quotes) “mod-
ule_name.class_name” and the value is a list of tuples

Return type dict

get_who()
It returns the modules which are in the current report.

Returns list containing the modules which are in the current report

Return type list (str)

abstract pretty_print_tuple(t, first_time=False, reported_by=False, display=True)
It prints a pretty line about a found threat record.

This method is intended to be invoked by display.

The expected format for the tuple is next:

1. str: module who raised the threat.

2. str: threat description.

3. SeverityBase: threat severity.

4. str (optional): advice for solving the threat. If it is not provided, the string “not specified” will be
displayed.

5. int (optional): threat row. If it is not provided, the value -1 will be displayed.

6. int (optional): threat col. If it is not provided, the value -1 will be displayed.

7. type: SeverityBase type which will be used to display the severity. This value is intented to be able
to join different Report instances.

Parameters

• t (tuple) – threat record.

• first_time (bool) – if you want to display a pretty box around the module name who
raised the threat, this value must be True. The default value is False.

• reported_by (bool) – if you want to display the module who raised the threat, this value
must be True. This arg should be used when you want to avoid the arg first_time. The
default value is False.

109

BOA, Release 0.3

• display (bool) – if True, it displays the threat.

Returns text to be displayed

Return type str

Note: If you want to show orderly the threats, you should use first_time=True for the first record and
first_time=False for the rest. If you do not want to show it orderly, you should use reported_by=True.

set_severity_enum_mapping(who, severity_enum_instance)
It sets the relation between a module and a severity enum.

Parameters

• who (str) – the module name in format “module_name.class_name”.

• severity_enum_instance (SeverityBase) – severity enum instance.

Returns it returns True if the relation was set. False otherwise

Return type bool

110 Chapter 51. BOAReportAbstract

CHAPTER

FIFTYTWO

BOAR - STDOUT

This file contains the BOARStdout class, which inherits from the abstract Report class. This base has the goal of report
the found threats using the standard output. It is a basic way of report the threats.

class reports.boar_stdout.BOARStdout(severity_enum, args)
BOARStdout class.

It implements the necessary methods to initialize, fill and display the threats report after the analysis.

display(who, display=True)
It displays all the threats from a concrete module.

Parameters

• who (str) – the module which found the threat.

• display (bool) – if True, it displays the threat.

Raises BOAReportWhoNotFound – if the given module is not found.

Returns text to be displayed

Return type str

display_all(print_summary=True, display=True)
It displays all the threats from all the modules. Moreover, it prints a summary at the end optionally.

Parameters

• print_summary (bool) – if True, it prints a summary with statistics about all the found
threats.

• display (bool) – if True, it displays the threat.

Returns text to be displayed

Return type str

pretty_print_tuple(t, first_time=False, reported_by=False, display=True)
It prints a pretty line about a found threat record.

The expected format for the tuple is next:

1. str: module who raised the threat.

2. str: threat description.

3. SeverityBase: threat severity.

4. str (optional): advice for solving the threat. If it is not provided, the string “not specified” will be
displayed.

5. int (optional): threat row. If it is not provided, the value -1 will be displayed.

111

BOA, Release 0.3

6. int (optional): threat col. If it is not provided, the value -1 will be displayed.

7. type: SeverityBase type which will be used to display the severity. This value is intented to be able
to join different Report instances.

Parameters

• t (tuple) – threat record.

• first_time (bool) – if you want to display a pretty box around the module name who
raised the threat, this value must be True. The default value is False.

• reported_by (bool) – if you want to display the module who raised the threat, this value
must be True. This arg should be used when you want to avoid the arg first_time. The
default value is False.

• display (bool) – if True, it displays the threat.

Returns text to be displayed

Return type str

Note: If you want to show orderly the threats, you should use first_time=True for the first record and
first_time=False for the rest. If you do not want to show it orderly, you should use reported_by=True.

112 Chapter 52. BOAR - Stdout

CHAPTER

FIFTYTHREE

BOAR - BASIC HTML

This file contains the implementation of the necessary methods of the report abstract class. This report class uses
HTML files to report about the found threats.

class reports.boar_basic_html.BOARBasicHTML(severity_enum, args)
BOARBasicHTML class.

It implements the necessary methods to alert about the found threats and interact with the HTML file.

display(who, display=True)
It creates the HTML table for a concrete module.

Parameters

• who (str) – the module which found the threat.

• display (bool) – if True, it displays the threat.

Raises BOAReportWhoNotFound – if the given module is not found.

Returns text to be displayed in HTML format

Return type str

display_all(print_summary=True, display=True)
It displays all the threats from all the modules. Moreover, it prints a summary at the end optionally. All in
HTML format.

Parameters

• print_summary (bool) – if True, it prints a summary with statistics about all the found
threats.

• display (bool) – if True, it displays the threat.

Returns text to be displayed in HTML format.

Return type str

pretty_print_tuple(t, first_time=False, reported_by=False, display=True)
It prints a pretty line about a found threat record.

The expected format for the tuple is next:

1. str: module who raised the threat.

2. str: threat description.

3. SeverityBase: threat severity.

4. str (optional): advice for solving the threat. If it is not provided, the string “not specified” will be
displayed.

113

BOA, Release 0.3

5. int (optional): threat row. If it is not provided, the value -1 will be displayed.

6. int (optional): threat col. If it is not provided, the value -1 will be displayed.

7. type: SeverityBase type which will be used to display the severity. This value is intented to be able
to join different Report instances.

Parameters

• t (tuple) – threat record.

• first_time (bool) – if you want to display a pretty box around the module name who
raised the threat, this value must be True. The default value is False.

• reported_by (bool) – if you want to display the module who raised the threat, this value
must be True. This arg should be used when you want to avoid the arg first_time. The
default value is False.

• display (bool) – if True, it displays the threat.

Returns text to be displayed in HTML format

Return type str

save_html(inner_html)
It saves the HTML content in the expectified file.

Args “absolute_path” and “filename” has to be defined in the rules file.

Parameters inner_html (str) – HTML content.

114 Chapter 53. BOAR - Basic HTML

CHAPTER

FIFTYFOUR

REPORTS

The reports are the last phase of BOA and is where all the found threats are displayed. The way the reports can be
displayed is customizable. There are basic Report implementation like BOARStdout or BOARBasicHTML, but you can
define your own.

These modules can be found in the main directory of BOA, concretely in the directory “reports”. The files you will
find there will have a name like “boar_whatever.py”, but is not necessary to follow the nomenclature. You can name
your modules as you like. If you want to write your own, you will have to store your module in the expected directory
(i.e. /path/to/BOA/reports).

All your report modules will need to inherit from BOAReportAbstract in order to work as a report module.

54.1 BOA internals

• BOAReportAbstract

54.2 Modules

• BOAR - Stdout

• BOAR - Basic HTML

115

BOA, Release 0.3

116 Chapter 54. Reports

CHAPTER

FIFTYFIVE

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

117

BOA, Release 0.3

118 Chapter 55. Modules

CHAPTER

FIFTYSIX

OTHER

• Changelog

• TODO List

119

BOA, Release 0.3

120 Chapter 56. Other

CHAPTER

FIFTYSEVEN

INDICES AND TABLES

• genindex

• modindex

• search

121

BOA, Release 0.3

122 Chapter 57. Indices and Tables

CHAPTER

FIFTYEIGHT

CHANGELOG

You will find here the main changes from one version to others.

58.1 Version 0.4

Minnor changes.

Changes:

• Some error codes has been updated.

• When input arguments are not correctly inserted, now not only argparse displays error message, but also BOA.

Fixed errors:

• When no environment variables was being used for a parser module in the rules file, the running analysis crashed.

58.2 Version 0.3

Dependencies among modules are possible.

Changes:

• The results of a module can be a dependency for others.

Fixed errors:

• Main argument “-\-no-fail” was not working as expected.

• When a module loading failed and the execution continued, was not being correctly removed.

• Minnor fixes.

58.3 Version 0.2

This version has made other elements to be customizable.

Changes:

• Support for other programming lenguages.

– Customizable parser modules.

• Customizable lifecycles.

123

BOA, Release 0.3

• Customizable reports.

Fixed errors:

• When a module could not load properly its arguments, was smashing all the arguments of the other modules.

• Some checks were not being done to avoid that customizable elements did not inherit from the defined abstract
class.

58.4 Version 0.1

This version has finished BOA core implementation.

Changes:

• Support for C programming language (with pycparser).

– Support only for AST.

• Rules files parsing.

– Very flexible with arguments for modules.

• Unique lifecycle.

• Multiple modules execution.

• Modules customizable.

• Threats report.

– Severity customizable.

124 Chapter 58. Changelog

CHAPTER

FIFTYNINE

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

125

BOA, Release 0.3

126 Chapter 59. Modules

CHAPTER

SIXTY

OTHER

• Changelog

• TODO List

127

BOA, Release 0.3

128 Chapter 60. Other

CHAPTER

SIXTYONE

INDICES AND TABLES

• genindex

• modindex

• search

129

BOA, Release 0.3

130 Chapter 61. Indices and Tables

CHAPTER

SIXTYTWO

TODO LIST

Here you will find a list of ideas to be implemented in BOA. It is not sure that these ideas will be implemented.

• Custom reports (implemented in version 0.2).

• Results from a module as args for other (implemented in version 0.3).

• Defer a module execution.

• Give the user the possibility of disable a false-positive detection.

131

BOA, Release 0.3

132 Chapter 62. TODO List

CHAPTER

SIXTYTHREE

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

133

BOA, Release 0.3

134 Chapter 63. Modules

CHAPTER

SIXTYFOUR

OTHER

• Changelog

• TODO List

135

BOA, Release 0.3

136 Chapter 64. Other

CHAPTER

SIXTYFIVE

INDICES AND TABLES

• genindex

• modindex

• search

137

BOA, Release 0.3

138 Chapter 65. Indices and Tables

CHAPTER

SIXTYSIX

MODULES

• Main Modules

• Lifecycles

• Parser Modules

• Security Modules

• Reports

139

BOA, Release 0.3

140 Chapter 66. Modules

CHAPTER

SIXTYSEVEN

OTHER

• Changelog

• TODO List

141

BOA, Release 0.3

142 Chapter 67. Other

CHAPTER

SIXTYEIGHT

INDICES AND TABLES

• genindex

• modindex

• search

143

BOA, Release 0.3

144 Chapter 68. Indices and Tables

PYTHON MODULE INDEX

a
args_manager, 7

b
boa, 3

c
constants, 9

e
enumerations.severity.severity_base, 23
enumerations.severity.severity_function_match,

27
enumerations.severity.severity_syslog, 25

l
lifecycles.boalc_abstract, 81
lifecycles.boalc_manager, 79

m
modules_importer, 17

r
reports.boar_abstract, 107
reports.boar_basic_html, 113
reports.boar_stdout, 111
rules_manager, 11

145

BOA, Release 0.3

146 Python Module Index

INDEX

Symbols
__init__() (args_manager.ArgsManager method), 7
__init__() (lifecycles.boalc_abstract.BOALifeCycleAbstract

method), 81
__init__() (lifecycles.boalc_manager.BOALifeCycleManager

method), 79
__init__() (modules_importer.ModulesImporter

method), 17
__init__() (reports.boar_abstract.BOAReportAbstract

method), 107
__init__() (rules_manager.RulesManager method), 11
__weakref__ (args_manager.ArgsManager attribute), 7
__weakref__ (lifecycles.boalc_abstract.BOALifeCycleAbstract

attribute), 81
__weakref__ (lifecycles.boalc_manager.BOALifeCycleManager

attribute), 79
__weakref__ (modules_importer.ModulesImporter at-

tribute), 17
__weakref__ (reports.boar_abstract.BOAReportAbstract

attribute), 107
__weakref__ (rules_manager.RulesManager attribute),

11

A
add() (reports.boar_abstract.BOAReportAbstract

method), 107
append() (reports.boar_abstract.BOAReportAbstract

method), 108
args_manager
module, 7

ArgsManager (class in args_manager), 7

B
boa

module, 3
BOALifeCycleAbstract (class in lifecy-

cles.boalc_abstract), 81
BOALifeCycleManager (class in lifecy-

cles.boalc_manager), 79
BOARBasicHTML (class in reports.boar_basic_html), 113
BOAReportAbstract (class in reports.boar_abstract),

107

BOARStdout (class in reports.boar_stdout), 111

C
check() (args_manager.ArgsManager method), 7
check_rules() (rules_manager.RulesManager

method), 11
check_rules_arg() (rules_manager.RulesManager

method), 11
check_rules_arg_high_level()

(rules_manager.RulesManager method),
12

check_rules_arg_recursive()
(rules_manager.RulesManager method),
12

check_rules_dynamic_analysis_runner()
(rules_manager.RulesManager method),
13

check_rules_init() (rules_manager.RulesManager
method), 13

check_rules_modules()
(rules_manager.RulesManager method),
13

check_rules_parser()
(rules_manager.RulesManager method),
14

check_rules_report()
(rules_manager.RulesManager method),
14

close() (rules_manager.RulesManager method), 14
constants

module, 9

D
display() (reports.boar_abstract.BOAReportAbstract

method), 108
display() (reports.boar_basic_html.BOARBasicHTML

method), 113
display() (reports.boar_stdout.BOARStdout method),

111
display_all() (reports.boar_abstract.BOAReportAbstract

method), 108

147

BOA, Release 0.3

display_all() (reports.boar_basic_html.BOARBasicHTML
method), 113

display_all() (reports.boar_stdout.BOARStdout
method), 111

E
enumerations.severity.severity_base
module, 23

enumerations.severity.severity_function_match
module, 27

enumerations.severity.severity_syslog
module, 25

Error (class in constants), 9
execute_instance_method() (lifecy-

cles.boalc_manager.BOALifeCycleManager
method), 79

execute_lifecycle() (lifecy-
cles.boalc_abstract.BOALifeCycleAbstract
method), 81

G
get_args() (rules_manager.RulesManager method), 14
get_dependencies() (rules_manager.RulesManager

method), 14
get_final_report() (lifecy-

cles.boalc_manager.BOALifeCycleManager
method), 79

get_instance() (modules_importer.ModulesImporter
method), 17

get_module() (modules_importer.ModulesImporter
method), 17

get_name() (lifecycles.boalc_abstract.BOALifeCycleAbstract
method), 81

get_nloaded() (modules_importer.ModulesImporter
method), 17

get_nmodules() (modules_importer.ModulesImporter
method), 18

get_not_loaded_modules() (mod-
ules_importer.ModulesImporter method),
18

get_report_args() (rules_manager.RulesManager
method), 14

get_rules() (rules_manager.RulesManager method),
14

get_runner_args() (rules_manager.RulesManager
method), 15

get_severity_enum_instance() (re-
ports.boar_abstract.BOAReportAbstract
method), 108

get_severity_enum_instance_by_who() (re-
ports.boar_abstract.BOAReportAbstract
method), 109

get_summary() (reports.boar_abstract.BOAReportAbstract
method), 109

get_who() (reports.boar_abstract.BOAReportAbstract
method), 109

H
handle_lifecycle() (lifecy-

cles.boalc_manager.BOALifeCycleManager
method), 80

I
is_module_loaded() (mod-

ules_importer.ModulesImporter method),
18

L
lifecycles.boalc_abstract

module, 81
lifecycles.boalc_manager

module, 79
load() (modules_importer.ModulesImporter method),

18
load_and_get_instance() (mod-

ules_importer.ModulesImporter class method),
18

load_args() (args_manager.ArgsManager method), 7

M
main() (in module boa), 3
make_final_report() (lifecy-

cles.boalc_manager.BOALifeCycleManager
method), 80

manage_args() (in module boa), 3
Meta (class in constants), 9
module

args_manager, 7
boa, 3
constants, 9
enumerations.severity.severity_base, 23
enumerations.severity.severity_function_match,

27
enumerations.severity.severity_syslog, 25
lifecycles.boalc_abstract, 81
lifecycles.boalc_manager, 79
modules_importer, 17
reports.boar_abstract, 107
reports.boar_basic_html, 113
reports.boar_stdout, 111
rules_manager, 11

modules_importer
module, 17

ModulesImporter (class in modules_importer), 17

O
open() (rules_manager.RulesManager method), 15

148 Index

BOA, Release 0.3

Other (class in constants), 9

P
parse() (args_manager.ArgsManager method), 7
pretty_print_tuple() (re-

ports.boar_abstract.BOAReportAbstract
method), 109

pretty_print_tuple() (re-
ports.boar_basic_html.BOARBasicHTML
method), 113

pretty_print_tuple() (re-
ports.boar_stdout.BOARStdout method),
111

R
raise_exception_if_non_valid_analysis() (life-

cycles.boalc_abstract.BOALifeCycleAbstract
method), 81

read() (rules_manager.RulesManager method), 15
Regex (class in constants), 9
reports.boar_abstract
module, 107

reports.boar_basic_html
module, 113

reports.boar_stdout
module, 111

rules_manager
module, 11

RulesManager (class in rules_manager), 11

S
save_html() (reports.boar_basic_html.BOARBasicHTML

method), 114
set_args() (rules_manager.RulesManager method), 15
set_dependencies() (rules_manager.RulesManager

method), 15
set_severity_enum_mapping() (re-

ports.boar_abstract.BOAReportAbstract
method), 110

SeverityBase (class in enumera-
tions.severity.severity_base), 23

SeverityFunctionMatch (class in enumera-
tions.severity.severity_function_match), 27

SeveritySyslog (class in enumera-
tions.severity.severity_syslog), 25

Index 149

	BOA main flow
	BOA internals
	BOA arguments handler
	Constants
	Rules Manager
	Modules Importer
	Exceptions
	Utilities
	Severity Base (Interface)
	Severity Syslog
	Severity for Module BOAModuleFunctionMatch
	Severity Enums
	Other
	Modules
	Other
	Indices and Tables
	Auxiliary Module - Pycparser AST Preorder Visitor
	Auxiliary Module - Pycparser CFG
	Auxiliary Module - Pycparser Util
	Auxiliary Modules
	Modules
	Other
	Indices and Tables
	Main Modules
	Modules

	Modules
	Other
	Indices and Tables
	BOAModuleAbstract
	BOAM - Function Match
	BOAM - CFG
	BOAM - CFG
	BOAM - Test
	Security Modules
	BOA internals
	Modules

	Modules
	Other
	Indices and Tables
	BOALifeCycle Manager
	BOALifeCycle Abstract
	BOALC - Basic
	BOALC - Pycparser AST
	Lifecycles
	BOA internals
	Modules

	Modules
	Other
	Indices and Tables
	BOAParserModuleAbstract
	BOAPM - Pycparser
	Parser Modules
	BOA internals
	Modules

	Modules
	Other
	Indices and Tables
	BOAReportAbstract
	BOAR - Stdout
	BOAR - Basic HTML
	Reports
	BOA internals
	Modules

	Modules
	Other
	Indices and Tables
	Changelog
	Version 0.4
	Version 0.3
	Version 0.2
	Version 0.1

	Modules
	Other
	Indices and Tables
	TODO List
	Modules
	Other
	Indices and Tables
	Modules
	Other
	Indices and Tables
	Python Module Index
	Index

